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Statistical Problems in Epidemiologic
Studies of the Natural History of Disease
by Ron Brookmeyer*

The development of effective disease prevention and treatment programs depends on an understanding
of the natural history of disease. A conceptual framework is presented for disease natural history and
consists of an asymptomatic period of disease followed by a period of symptomatic disease. The focus is
on epidemiologic studies for identifying risk factors of the onset of asymptomatic disease, for identifying
cofactors of progression to symptomatic disease, and for estimating the duration of the asymptomatic
period. The strengths and limitations of various epidemiologic study designs and sources of epidemiologic
data are considered for characterizing disease natural history. Issues in the interpretation and analysis
of natural history parameters of disease estimated from cross-sectional, prevalent cohort, cohort, and
matched case-control studies are considered. The issues and analytic methods are illustrated with studies
of the acquired immunodeficiency syndrome (AIDS) and cervical cancer. Based on these analytic methods,
an estimate of the incubation period distribution of AIDS is given.

Introduction
An understanding of the natural history of disease is

important for developing effective disease prevention
and treatment programs. The objective of this paper is
to consider the strengths and limitations of various ep-
idemiologic study designs and sources of epidemiologic
data for characterizing the natural history of disease.
A simple conceptual framework for the natural his-

tory of a disease is a two-stage model (Fig. 1). An in-
dividual is free of disease (healthy) until the onset of
stage 1 disease. Stage 1 refers to preclinical or asymp-
tomatic disease. It is assumed there is a diagnostic
screening test that can detect the presence of stage 1

disease. The individual with stage 1 disease may even-
tually progress to stage 2, which is the clinical or symp-
tomatic period. It is assumed that individuals enter
stage 1 before the onset of stage 2 disease. The focus
of this paper is on the natural history of disease up to
the onset of symptomatic disease (stage 2).
Two types of covariates affect the natural history of

disease. The first type, X1, are those that affect the risk
of stage 1 disease. The hazard (or incidence) of onset of
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FIGURE 1. Two-stage model for disease natural history. Covariates,
X1, effect risk of stage 1 (asymptomatic) disease. Covariates, X2,
effect risk of progression to stage 2 (symptomatic) disease.
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stage 1 at time s is call X(s; X1), where the time scale
s may refer either to calendar time or chronological age.
The second type of covariates, X12, are those that effect
risk of progression to stage 2 from stage 1 disease. The
duration of time spent in stage 1 has been termed the
preclinical duration, the incubation period and the so-
journ time (1). The distribution function of stage 1 du-
rations, F(t; X2), is the probability an individual with
stage 1 disease progresses to stage 2 within t years of
onset of stage 1. The corresponding hazard and density
functions are called h(t; X2) and f(t; X2), respectively.
The distribution function may be improper as not all
individuals may eventually progress to stage 2.
Two examples illustrate this conceptual framework:

cervical cancer and the acquired immunodeficiency syn-
drome (AIDS). The natural history of cervical cancer
consists a very long asymptomatic period (stage 1),
which may consist of histological abnormalities ranging
from cervical intraepithelial neoplasia (CIN I, II, and
III) to preclinical invasive disease (2). The asympto-
matic period may be followed by the onset of symptoms
(stage 2) by which point the lesion has become invasive
cancer. Cervical cytology (the PAP test) can detect the
presence of stage 1 disease. Risk factors (X1) which may
be related to risk of stage 1 disease include human pap-
illomavirus (HPV) infection and certain contraceptive
practices. A cofactor, X2 which has been suggested to
possibly accelerate progression to stage 2 from stage 1,
is infection with HPV Type 18 (3).
The natural history of AIDS begins with infection

with the etiologic agent, the human immunodeficiency
virus (HIV) (4,5). In our framework, the onset of stage
1 refers to HIV infection (actually the development of
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HIV antibodies or seroconversion) while stage 2 refers
to clinically defined AIDS. The screening test for de-
tecting stage 1 is the AIDS antibody test (Elisa or West-
ern Blot). Risk factors (X) for infection (stage 1) include
high-risk behaviors (such as intravenous drug use and
large numbers of sexual partners), hemophilia, and pre-
vious blood transfusions. It has been suggested that a
cofactor (X2) for progression to clinical AIDS from the
asymptomatic HIV infected state is age at infection (6).
There are important public health reasons for study-

ing the natural history of disease. Identification of risk
factors for stage 1 disease is crucial for developing ef-
fective prevention programs. Identification of cofactors
for progression to stage 2 is important for the devel-
opment of treatment and intervention programs: indi-
viduals at higher risk of progression to stage 2 may be
monitored more closely or treated more aggressively.
An estimate of the distribution function F(t; XC2) is im-
portant for two reasons. First, it is useful in developing
recommendations on screening frequency and the time
interval between screens; second, it is useful for pre-
dicting future cases of clinical disease. For example,
assume that the time of onset of stage 1 and the duration
spent in stage 1 are independent given the covariates
X1 and X2. Then the cumulative probability an individ-
ual with covariates (X, X) develops stage 2 disease at
or before calendar time (or chronological age) t is

t

D(t; IS, I2) = f g(s; Xi)F(t - S; X2)ds (1)

where g(s; IC,) = X(s; XI1)exp[ - X(s; Xl)ds] is the prob-
ability density of onset of stage 1 at time s. Eq. (1) has
been used to project the course of the AIDS epidemic
(7-9). Inforrnation is available both on the numbers of
AIDS cases diagnosed over calendar time and F(t) (the
incubation period distribution). Thus estimates of the
numbers of individuals previously infected can be ob-
tained through the technique of back-calculation (8).
These numbers infected are then projected forward to
obtain short-term projections of AIDS incidence.

Epidemiologic Study Designs for
Characterizing Natural History

It is useful to consider the ideal epidemiologic study
for characterizing the natural history of disease. The
ideal study would consist ofa disease-free cohort defined
at (chronological or calendar) time s = 0. The cohort
would undergo continuous surveillance and screening in
order to determine the exact times that individuals de-
velop stage 1 and stage 2 disease. The covariates X1
and X2 would be ascertained on all individuals. The
screening test to detect stage 1 disease would have neg-
ligible error (specificity = sensitivity = 1.0). Further,
individuals detected in stage 1 would be monitored for
onset of stage 2. There would be no treatment inter-
vention for these individuals that could alter the natural
history.

However, such a study is usually impossible to per-
form for many reasons. First, if an effective treatment
exists, individuals detected with stage 1 must be
treated, which interrupts the natural history of disease.
Second, we cannot perform continuous screening tests
for stage 1 disease but, at best, perform only periodic
screens. Third, the errors associated with the screening
test may not be negligible. Fourth, a very large cohort
would be required for a rare disease in order to identify
a sufficient number of individuals with incident stage 1
disease. Fifth, the follow-up period would need to be
long for diseases with long incubation periods (stage 1
durations).

In the next sections, we consider the strengths and
limitations of alternative epidemiologic designs for char-
acterizing the natural history of disease. We outline
analytic approaches to estimate parameters that de-
scribe disease natural history. We assume in the next
sections that the errors associated with the screening
test are negligible and can be ignored, although in the
last section, some consideration is given to situations in
which screening test errors are not negligible.

The Cross-Sectional Study
One of the simplest study designs is the cross-sec-

tional study. Consider a large cohort of individuals de-
fined at time s = 0. A random sample of these individ-
uals is chosen at a point in time (s = Y). We test each
individual in the sample for presence of stage 1 disease
and obtain information on a covariate, Z. We assume,
for simplicity, Z is dichotomous. A common practice is
to cross classify individuals according to presence or
absence of stage 1 disease and the two levels of the
covariate (Z = 0 and Z = 1). This was the design of a
recent study to investigate the relationship between
HPV infection and early stages of cervical cancer (10).
What are the limitations of the cross-sectional study for
characterizing natural history?
The most serious limitation is that the time sequence

of events cannot be established. We cannot determine
if an individual was exposed (Z = 1) before or after
onset of stage 1 disease. This is an important limitation
with cross-sectional studies of HPV infection and cerv-
ical cancer, because individuals with stage 1 (CIN) dis-
ease may be more (or perhaps less) prone to acquire
HPV infection. This problem is not unique to the cross-
sectional study and occurs in the case-control study as
well.
The issue of the time sequence does not arise if Z is

a fixed covariate, that is, the value of the covariate is
determined at time s = 0 for each individual. However,
even ifZ is a fixed covariate, the interpretation of com-
monly used parameters of association such as the odds
ratio must be modified.

Table 1 displays the classification probabilities asso-
ciated with the.2 x 2 table which results from the cross-
sectional study, that is, the joint probability distribution
of stage 1 disease (presence or absence) and the cov-
ariate value (Z = 0 or Z = 1). These probabilities
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depend on the following: the incidence ofstage 1 disease,
X(s; Z); the distribution of stage 1 durations, F(t; Z);
the probability distribution of the covariate Z [i.e., P(Z
= 1) = p and P(Z = 0) = 1 - p) ]; and the time s =

Y that the cross-sectional study is conducted. The odds
ratio is the cross product of these cell probabilities, and
is independent of p. Under the assumption that stage
1 disease is rare with constant incidence rate, that is
Xl(s; Z) = exp(oto + a1Z), then the hazard XI(s; Z) is
approximately the density of g(s; Z). The odds ratio
from the cross-sectional study, WMC8 is approximately

eY
J (1 - F(t; Z = 1))dt

(1)8 exp (oal)C
-|(1 - F(t; Z = 0))dt-

Jo

For example, if the distribution of stage 1 durations is
exponential, namely F(t) = 1 - exp( - exp(po + P3Z)t),
then

1e-eY- exp(130+31
WCS exp(ot, Y-e-exp(o)

If the study is conducted at a time s = Y sufficiently
large so that then the term in brackets in Eq. (2) is
nearly 1, then

IC8 --exp(ao (3)

Under the above assumptions for which Eq. (3) is valid,
consider the following example: suppose an individual
with Z = 1 is at twice the risk of stage 1 disease [i.e.,
(eal = 2) ]; further, suppose that among those with stage
1 disease an individual with Z = 1 is at twice the risk
of progression to stage 2 disease (ef3 = 2.0). Using Eq.
(3), the odds ratio obtained from a cross-sectional study
(aside from sampling variation) would be 1.0. The naive
odds ratio obtained from the cross-sectional study would
suggest the covariate Z is not associated with disease,
when in fact, it is positively associated with both inci-
dence of stage 1 disease and progression to stage 2
disease.

In summary, the odds ratio obtained from the cross-
sectional study is determined by the joint effects of the
covariate on both the risk of stage 1 disease and the
risk of progression to stage 2 disease. It is not possible
to separate out these effects solely from cross-sectional
data.

It may be possible to separate the effects with some
additional information. For example, we could supple-
ment the cross-sectional study with an incident case-
control study. The case-control study would consist of

incident cases of stage 2 disease and a sample of con-
trols. Covariate information, Z, would be ascertained
on all cases and controls. Under the same assumptions
which led to Eq. (3), the odds ratio from the incident
case-control study would be (aside from sampling var-
iation)

W : e'l .

Then the ratio of the odds ratios obtained from the
incident case-control and cross-sectional studies is wj/

()C8 = e1l. Thus, in this case, the supplementary data

allows separate estimation of the two effects, eal and
el.

The Prevalent Cohort Study
The prevalent cohort study consists of a cohort of

individuals, each of whom has stage 1 disease at entry
into the cohort. The prior time ofonset ofstage 1 disease
is a random, unknown quantity. The cohort is followed
for onset of stage 2 disease. The objective is to identify
cofactors, X2, of disease progression and to estimate
F(t; X2). This design was recently used in several nat-
ural history studies of the acquired immunodeficiency
syndrome, in which patients with prevalent HIV infec-
tion were enrolled in a cohort and followed for onset of
clinical AIDS.
The prevalent cohort study has advantages but also

serious limitations. One advantage is that it is not nec-
essary to follow a large cohort ofdisease-free individuals
in order to identify incident (newly onset) stage 1 dis-
ease. Rather, individuals identified with prevalent stage
1 disease from a cross-sectional survey could be enrolled
into the cohort. The savings in terms of sample size and
follow-up time could be substantial if the disease is rare,
(i.e., X(s;X1) is small). However, the fact that individ-
uals with prevalent stage 1 disease are enrolled in the
cohort rather than incident stage 1 disease is also a
serious limitation. There are biases inherent in esti-
mating the relative risk ofa cofactor and the distribution
function F(t; XC2) from prevalent cohorts (11).
For example, let F*(t, X2) be the cumulative proba-

bility of onset of stage 2 disease within t years of follow-
up for an individual prevalent with stage 1 disease at
the beginning of follow-up. In general F*(t, X2) wil not
equal F(t; XC2). The direction of the bias (F*(t; X2) -F(t;
X2)), depends on whether the hazard, h(t; I2) of onset
of stage 2 disease t years after entering stage 1 is in-
creasing or decreasing. If the hazard is increasing then
F*(t; XI2) > F(t; IX2). The intuition for this result is that
with an increasing hazard of onset of stage 2, an indi-
vidual with prevalent stage 1 disease has a worse prog-

Table 1. Classification probabilities in a cross-sectional study conducted at time 8 = y.a

Stage 1 disease Disease-free
Z = 1 p.fy* g(s; Z = 1) [1 - F (Y - s; Z = 1] ds p * exp (- fy A (s; Z = 1)ds
Z = 0 (1 - p)fIYg(s; Z = 0) [1 - F (Y - s; Z = 0] ds (1 - p) * exp (- fy A (s; Z = O) ds
aThe covariate Z is dichotomous taking values 0 and 1 with probabilities (1 - p) and p, respectively.
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nosis than an individual with newly onset stage 1 dis-
ease, because the prevalent individual has had stage 1
disease for a longer period of time. The bias can be
substantial. For example, an estimate of the cumulative
probability of developing AIDS within 3 years of follow-
up based on a prevalent cohort, was 0.34 (12). More
recent estimates based on cohorts of newly infected in-
dividuals suggest this cumulative probability is less than
0.05 (6,13).
Assuming a proportional hazards model h(t) =

hO(t)exp(13Z) where t is the time since onset of stage 1
disease, then estimates of the relative risk exp(,B) de-
rived from a prevalent cohort will be biased if the pro-
portional hazards analysis is performed using follow-up
time. There are two reasons for the bias. The first rea-
son is that the distribution of the prior times of onset
of stage 1 disease for two subgroups (Z = 0 and Z =
1) may be different (X(s; Z = 0) * X(s; Z = 1). For
example, one prevalent cohort study reported a higher
cumulative proportion of AIDS in New York than in
Washington (12). The most plausible explanation is the
New York cohort was infected earlier in calendar time
than the Washington cohort, and not that geography is
a cofactor of disease progression. The second reason for
bias occurs even if X(s; Z = 0) = X(s; Z = 1). This bias
is due to the differential effects of length-biased sam-
pling in the two subgroups (Z = 0 and Z = 1). The
direction of the bias also depends on whether the hazard
h(t) increases or decreases over time. For example, if
Z is a real cofactor (I > 0) and the hazard is increasing,
then the individuals with Z = 0 will tend to have been
in stage 1 longer at the beginning of follow-up then
individuals with Z = 1. This biases the relative risk 13
toward unity. Fortunately, as shown in Brookmeyer
and Gail (11) this bias is not of sufficient magnitude to
reverse the direction of an effect [that is, make a real
cofactor (,B > 0) appear protective].

Cohort Studies of Serially Screened
Populations without Treatment
Intervention

In this section, we consider cohort studies of a serially
screened population without treatment intervention.
Suppose a cohort of disease-free individuals is defined
at calendar time (or chronological age) s = 0. Individ-
uals in the cohort are periodically screened for presence
or absence of stage 1 disease. All individuals are fol-
lowed for onset of stage 2 disease. It is assumed there
is no treatment intervention for individuals detected
with stage 1 disease and, further, the errors associated
with the screening test are negligible. Then, it is pos-
sible to determine the onset time of stage 1 disease up
to an interval. This type of study has considerably more
information than either the cross-sectional or prevalent
cohort study. Unlike the cross-sectional and prevalent
cohort study, this design allows estimation of the sep-
arate effects of a covariate on risk of stage 1 disease
and risk of progression to stage 2 from stage 1.

This was the design of a recent epidemiologic study
of the natural history ofAIDS among hemophiliacs (14),
the National Cancer Institute Multicenter Hemophilia
Cohort Study. Hemophiliacs were at risk of HIV infec-
tion from the mid-1970s in the United States because
of contamination of replacement clotting factors. The
study consisted of hemophiliacs who regularly visited
treatment centers. Serum samples which were obtained
at these visits were stored and subsequently tested for
presence of HIV infection. The following information is
recorded on each individual (the subscript i denotes in-
formation obtained from the ith individual): a) an in-
dicator variable E that indicates whether the individual
had a positive screening test during follow-up (in which
case we set Ei = 1, or otherwise Ei = 0); b) if the in-
dividual had a positive test, then the interval in which
onset of stage 1 disease occurred is recorded as (Li, Ri)
where Li is the calendar (or chronological age) time of
the most recent negative test and Ri is the calendar (or
chronological age) time of the earliest positive screening
test; c) an indicator, bi, that indicates if the individual
had onset of stage 2 disease by last follow-up (in which
case bi = 1 or otherwise bi = 0); d) the time ti of last
follow-up or onset of stage 2 disease whichever comes
first; and e) covariates X1i and X2i. The analysis must
account for the fact that the time of infection is known
only up to an interval.
We assume independence between onset time ofstage

1 and the duration spent in stage 1 conditionally on the
covariates X1 and X2. Assuming parametric models for
the probability density functions of stage 1 disease, g(s;
IC) and stage 2 disease, fit, X2), the full likelihood func-
tion can be derived. Each individual contributes one of
four possible factors to the likelihood, corresponding to
the four values of (Ei, bi). These factors can be expressed
in terms of convolutions. For example, the likelihood
contribution for an individual with -i = 1 and bi = 1 is

JRi

g(s; Yl)f(ti - s; X2)ds (4)

Brookmeyer and Goedert describe this approach (14).
Modified Newton-Raphson algorithms can be used to
find the maximum likelihood estimates of the parame-
ters of the stage 1 and stage 2 disease incidence func-
tions. The analysis produces not only estimates of rel-
ative risk of covariates but also estimates of the
incubation period distribution, F(t; X2). The analysis
(14) of the National Cancer Institute Multicenter Hem-
ophilia Cohort Study found that age was a cofactor (X2)
of disease progression. Table 2 gives the estimates of
F(t) for hemophiliacs over the age of 20. The estimate
of the 3-year cumulative probability of AIDS was only
0.033, which is considerably less than prior estimates
obtained from prevalent cohorts.

Cohort Studies of Serially Screened
Populations with Treatment Intervention
A major analytic complication of most cohort studies

of disease natural history is that if an effective treat-
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Table 2. Estimated cumulative probability of AIDS within t
years of seroconversion, F (t), and 95% confidence intervals for

individuals over age 20 based on hemophilia cohort.

t years F (t) 95% Confidence intervala
1 0.002 (0.002, 0.006)
2 0.012 (0.011, 0.024)
3 0.033 (0.025, 0.065)
4 0.066 (0.045, 0.095)
5 0.113 (0.088, 0.168)
6 0.174 (0.128, 0.238)
7 0.245 (0.180, 0.320)

aConfidence intervals computed for each fixed t separately by in-
version of a likelihood ratio test.

ment exits, then individuals who are detected in an
asymptomatic state (stage 1) must be treated. Consider
a cohort of disease-free individuals defined at calendar
time (or chronological age) s = 0. Individuals are pe-
riodically screened for stage 1 disease. If an individual
is detected with stage 1 then he is treated. At the time
treatment begins, the individual no longer contributes
information about natural history because the natural
course of the disease is altered.
Assuming parametric models for the stage 1 and stage

2 disease incidence functions, the full likelihood function
can be developed under the assumption of independence
between onset time and duration of stage 1 disease. In
the notation of the preceding section, individuals con-
tribute one of three possible factors to the likelihood
corresponding to (ei = 1), (Ei = 0, bi = 0), and (Ei =
0, bi = 1). For example, the likelihood contribution for
an individual detected with stage 1 disease (Ei = 1) at
time Ri is Eq. (4) with the stage 2 probability density
function f(t; X2) replaced by the survival function 1 -

F(t; XC2). The stage 1 durations for individuals detected
by the screen (Ei = 1) are right censored because of
treatment intervention. Accordingly, important infor-
mation for estimating the parameters of F(tj X2) is de-
rived from individuals with onset of both stage 1 and
stage 2 disease between two successive screening tests
(Ei = 0, 8i = 1).
Under a rare disease assumption with constant inci-

dence of stage 1 disease, X(s; X1) = exp(ao + o1X),
an approximate Poisson likelihood can be constructed
as in Day and Walter (15). Suppose the screening tests
occur at fixed times Si, S2,. .. ,Sk for all individuals.
Then the number of individuals, di, who are diagnosed
with stage 2 disease between the ith and (i + 1)St screen
has an approximate Poisson distribution with mean

eao + alXl F(si+1 -si)

The number of individuals detected with stage 1 disease
at the ith screen is also approximately Poisson distrib-
uted with mean

Si-Si-i

eao + alXl [1 - F(u)]du
0

A modification of this approach has been used in a breast

screening program (1,15) to account for errors in the
screening test.

Case-Control Studies of Serially Screened
Populations with Treatment Intervention
There are a number of disadvantages of the cohort

study described in the preceding section. If the disease
is rare (X(s; IC) small) a very large cohort would be
required and the screening program would have to be
centrally organized. An alternative design is the case-
control study. The advantage, of course, is follow-up on
a large cohort is not required. However, an important
limitation of the case-control design is that the absolute
incidence of stage 1 is not estimable because the num-
bers of cases that are sampled are pre-fixed. Never-
theless, the case-control approach can be useful, and we
briefly consider analytic approaches for gleaning infor-
mation about natural history from matched case-control
studies.

In case-control studies of a serially screened popu-
lation, there are two types of cases. The first type is
cases with incident stage 2 disease, and the second type
are cases that are screen detected with stage 1 disease.
Cases that are diagnosed between screens with incident
stage 2 disease are called interval cases to emphasize
that the cases are diagnosed in the interval between
screens. Cases detected by the screening test with stage
1 disease are called screen detected cases. Each interval
case is matched to R controls on the basis of specified
matching criteria (R may vary across matched sets).
These controls are required to be free of stage 2 disease
at the time of diagnosis of the case. Each screen de-
tected case is also matched toR controls. These controls
are required to have screened negative at the time the
screen detected case was found with stage 1 disease.
We assume an underlying cohort defined as s = 0.

Individuals are screened at random times, beginning at
some sufficiently large time, s*, so that F(s*) = 1.
We assume stage 1 disease is rare with constant in-

cidence rate. We allow for the fact that the incidence
of stage 1 disease may depend upon covariates not in-
cluded in the matching criteria. We assume the inci-
dence of stage 1 disease for the jth individual in the ith
matched set with covariate vector Xij is Xij =
Xiexp(q1ij). In this model, we are allowing for the pos-
sibility that the baseline incidence of stage 1 disease,
Xi, may vary across matched sets. The covariate vector,
Xij, includes covariates that are not included in the
matching criteria that effect incidence ofstage 1 disease.
It is further assumed for simplicity that there is a com-
mon distribution function of stage 1 durations, F(t),
which does not depend on any covariate. The time in-
terval between selection as a case or control and the
last prior screening test is ascertained and is called tij,
where i indexes the matched set and j = O, ... ,R in-
dexes the individuals in the set. By convention we let
j = 0 refer to the case. If the individual did not have a
prior screen we set tij = + oo°
We assume a parametric model for F(t) and that F is
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a proper distribution function; that is we assume a pro-
gressive disease model. We can construct a conditional
likelihood (16,17) that involves the parameters a and
the parameters of F(t). Matched sets (based on interval
cases) contribute the following factor to the conditional
likelihood

e-xioF(tio)
R ~~~~~~~~~(5)R

I eCXXijF(tjj)
j=o

We note the term Xi appears in the numerator and de-
nominator of Eq. (5) and cancels out. Matched sets
based on screen detected cases contribute analogous
contributions as Eq. (5) except F is replaced by FB, the
backward recurrence time distribution

l st

FB(t) =- (1 - F(u))du

where ,u =f(1- F(u))du is the expected stage 1

duration. The backward recurrence time distribution is
the distribution function of durations spent in stage 1
for an individual who is known to be prevalent with
stage 1 disease at a fixed point in time. The conditional
maximum likelihood estimates are found by maximizing
the product of the likelihood contributions from the in-
terval and screen-detected matched sets. The condi-
tional likelihood is independent of the parameters Xi,
the baseline incidence of stage 1 disease in the ith
matched set. This serves to emphasize again that it is
not possible to estimate absolute incidence from a case-
control study.
A modification of this analytic approach was used in

the analysis of a matched case-control study of PAP
smear screening for cervical cancer in Northeast Scot-
land (17). The modification accounted for screening test
errors, and also accounted for the fact that not all pre-
clinical lesions (stage 1 disease) progress to clinically
(symptomatic) invasive cervical cancer (stage 2).

Errors in the Screening Test
We have considered the strengths, limitations, and

analytic approaches associated with various epidemio-
logic designs for studies of disease natural history. An
underlying assumption of the preceding sections was
that diagnostic errors of the screening test were neg-
ligible and could be ignored. Often the test errors are
not negligible; thus, the analytic approaches must be
modified accordingly. There are two types of errors.
The false positive error occurs when an individual with-
out stage 1 disease falsely tests positive. The false neg-
ative error occurs when an individual with stage 1 dis-
ease falsely tests negative.

In order to develop analytic procedures in the pres-
ence of test errors, additional probabilistic assumptions
are required. For example, one can assume the prob-
ability of a false positive error is 0, the probability of a

false negative error is E, and further errors on succes-
sive screens are independent. These were the assump-
tions employed in an analysis of natural history from a
breast cancer screening program (15) and a cervical can-
cer screening program (16).
An alternative to the independence assumption is to

assume a proportion of individuals with stage 1 disease
always falsely test negative. Another alternative is to
assume the probability of a false negative error changes
over the course of stage 1 disease. For example, the
preclinical stage (stage 1) of cervical cancer can be di-
vided into a noninvasive preclinical disease phase and
an invasive preclinical disease phase. One can assume
that the false negative probabilities are different for the
two phases and that test errors conditional of the dis-
ease state (i.e., precinical noninvasive or preclinical
invasive) are independent.
Under model assumptions for test errors such as

those described above, the likelihood function for the
various epidemiologic designs could be derived. The
likelihood function would include an additional param-
eter, E, which is the probability of false negative error.
This parameter can be estimated jointly along with the
other natural history parameters (1,17). However, an
important caveat is that parameter estimates may be
highly correlated. For example, under the indepen-
dence assumption it was found that the estimate of e,
the probability of a false negative error, and ,u, the mean
stage 1 duration, were highly correlated (15). Clearly,
it would be preferable to use a reliable external estimate
of E, if available, rather than to jointly estimate E along
with the other natural history parameters.
However, even if an estimate of e was available, as-

sumptions about the joint distribution of successive test
results, conditional on the true disease state, would be
required. An important issue in studies of disease nat-
ural history concerns the development of plausible as-
sumptions about screening test errors and the sensitiv-
ity of estimates of natural history parameters to
alternative model assumptions about these errors.

R. Brookmeyer was partially supported by Public Health Service
grants CA-48723 from the National Cancer Institute and AI-16959
from the National Institute of Allergy and Infections Diseases.

REFERENCES

1. Walter, S. D., and Day, N. E. Estimation of the duration of a
precinical disease state using screening data. Am. J. Epidemiol.
118: 865-885 (1983).

2. Campion, M. J., McCance, D. J., Cuzick, J., and Singer, A. Pro-
gressive potential of mild cervical atypia: prospective cytological
colposcopic and virologic study. Lancet ii: 237-240 (1986).

3. Kurman, R. J., Schiffmnan, M. H., Lancaster, W. O., Reid, R.,
Jenson, A., Temple, R., and Lorinez, A. Analysis of individual
human papillomavirus types in cervical neoplasia: a possible role
for type 18 in rapid progression. Am. J. Obstet. Gynecol. 159:
293-296 (1988).

4. Barre-Sinoussi, F., Chermann, J. C., Rey, F., Nugeyre, M.,
Chamaret, S., Gruest, J., Daugvet, C., Axler-Blin, C., Vezinet-
Brun, F., Rouzioux, C., Rozenbaum, W., and Montagnier, L.
Isolation of T-lymphotropic retrovirus from a patient at risk for



STATISTICAL PROBLEMS IN NATURAL HISTORY STUDIES 49

acquired immune deficiency syndrome (AIDS). Science 220: 868-
871 (1983).

5. Galo, R. C., Salahuddin, S. Z., Popovic, M., Shearer, G., Kaplan,
M., Haynes, B., Palker, T., Redfield, R., Oleske, J., Safai, B.,
White, G., Foster, P., and Markham, P. Frequent detection and
isolation of cytopathic retrovirus (HTLV-III) from patients with
AIDS and at risk for AIDS. Science 224: 500-503 (1984).

6. Eyster, M. E., Gail, M. H., Ballard, J. 0. et al. Natural history
of human immunodeficiency virus infections in hemophiliacs: ef-
fects of T-cell subsets, platelet counts and age. Ann. Intern. Med.
107: 1-6 (1987).

7. Brookmeyer, R., and Gail, M. Minimum size of the acquired im-
munodeficiency syndrome (AIDS) epidemic in the United States.
Lancet 2: 1320-1322 (1986).

8. Brookmeyer, R., Gail, M. A method for obtaining short-term
projections and lower bounds on the size of the AIDS epidemic.
J. Am. Stat. Assoc. 83: 301-308 (1988).

9. Gail, M. H., and Brookmeyer, R. Methods for projecting the
course of the AIDS epidemic. J. Natl. Cancer Inst. 80: 900-911
(1988).

10. Lorincz, A. T., Temple, G. F., Kurman, R. J., Jenson, A. B.,
and Lancaster, W. D. Oncogenic association of specific human
papillomavirus types with cervical neoplasia. J. Natl. Cancer Inst.
79: 671-676 (1987).

11. Brookmeyer, R., and Gail, M. H. Biases in prevalent cohorts.
Biometrics 43: 739-749 (1987).

12. Goedert, J. J., Biggar, R. J., Weiss, S. H., Eyster, M., Melbye,
M., Wilson, S., Ginzburgh, H., Grossman, R., Di Gioia, R., San-
chez, W., Giron, J., Ebbesen, P., Gallo, R., and Blattner, W.
Three-year incidence of AIDS among HTLV-III infected risk
group members. Science 231: 992-995.

13. Hessol, N. A., Rutherford, G. W., O'Malley, P. M., Doll, L.,
Darrow, W., and Jaffe, H. The natural history of human immu-
nodeficiency virus infection in a cohort ofhomosexual and bisexual
men: a seven year prospective study. Presented at the Third
International Conference on AIDS, Washington, DC, June 1987.

14. Brookmeyer, R., and Goedert, J. J. Censoring in an epidemic
with an application to hemophilia associated AIDS. Biometrics
45: 325-335 (1989).

15. Day, N. E., and Walter, S. D. Simplified models of screening for
chronic disease from mass screening programs. Biometrics 40: 1-
14 (1984).

16. Brookmeyer, R., Day, N. E., and Moss, S. Case-control studies
for estimation of the natural history of preclinical disease from
screening data. Stat. Med. 5: 127-138 (1986).

17. Brookmeyer, R., and Day, N. E. Two-stage models for the analy-
sis of cancer screening data. Biometrics 43: 657-670 (1987).


